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Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population 
analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can 
identify subsets of the whole sample by detecting allele frequency differences within the data and can assign 
individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE’s most 
commonly used ancestry and frequency models, plus an overview of the main applications of the software in human 
genetics including case-control association studies, population genetics and forensic analysis. The review is 
accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. 
Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters 
on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: 
CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to 
case-control association studies. 
Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct and STRAT can be applied to 
provide researchers with an informed choice of parameter settings and supporting software when analyzing their 
own genetic data. 
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1. STRUCTURE version 2.3.3 (http://pritch.bsd.uchicago.edu/structure.html (Pritchard 

et al., 2000a)) 
 

1.1 Preparing a file to run in STRUCTURE 

 

Data to be analysed with STRUCTURE should be organized in one single matrix 

(saved as a txt file) where sampled individuals are organized in rows and genetic loci 

(herein markers) in columns. For diploid organisms the individual data can be organized 

in two consecutive rows (representing chromosomes) with each locus in one column 

(option 1, Figure 1) or in one row with each locus in two consecutive columns (option 

2, Figure 1). Additional information can be added to the file using a previously 

established order but this is completely optional. 

 

a) Rows 

i. Marker name (M1…ML) – optional; as a series of integers or characters; 

the number of values is the same as the number of markers. 

ii. Recessive alleles (r1…rL) – only applied to data sets with dominant 

markers; an integer; generally this row is not included in SNP or STR files 

(one exception being clinical genetics studies). This label can be used for 

AFLP data or when the individuals studied are polyploid with ambiguous 

genotypes. 

iii. Inter-marker distance (-1…DL-1,L) – optional; a number value applicable 

to linked markers and representing genetic distances (e.g. centiMorgans) 

or a measure based on physical distances. It is important that the markers 

are placed in the same order as their map position. The first marker of each 

linkage group should be specified by -1 then those following distances are 

positive values. 

iv. Phase information (p1
(L)

…pL
(1)

) – optional; only applicable to diploid 

data; a number value between 0 and 1 used solely with the linkage model. 

This data row should be placed after the genotype data, for each sample. 

This information is particularly interesting in human studies when haploid 

data from the X chromosome of males is analysed together with diploid 

autosomal data. 

 

b) Columns 

i. Label – optional; series of integers or characters that identifies each 

individual. If characters are used some problems may occur when using 

the post-hoc analysis software: CLUMPP and/or distruct. 

ii. Population data – optional; an integer that represents a population defined 

by the researcher; by default this information is not used by the grouping 

algorithm but it can be used to help organize the output file. 

iii. PopFlag – optional; 0 or 1 representing the Boolean variable where 1 = 

TRUE, use population data; and 0 = FALSE, do not use population data. 

iv. Location – optional; an integer that represents a sampling location, or 

other shared characteristic, for each individual. This information is used by 

the LOCPRIOR model. When the location data is the same as the 

population data it is possible to use the latter value with the LOCPRIOR 

model without including the location column. 

http://pritch.bsd.uchicago.edu/structure.html
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v. Phenotype – optional; additional information that represents a phenotype 

of interest. This information is not used by STRUCTURE software but it 

allows the interaction with STRAT in case-control studies. 

vi. Extra columns – optional; additional information that is ignored by the 

software but can be useful labels or points of reference for the researcher. 

vii. Genotypic data (Loc 1…Loc L) – obligatory; an integer; each allele of a 

determinate marker should be represented by a unique integer (e.g. for 

SNPs A=1, C=2, G=3, T=4 and for STRs 12.3=123, though a size estimate 

in nucleotides is commonly used). 

 

The absence of a genotype should be represented by an integer that is not present in 

the data file (usually -9). In fact, missing alleles do not contribute to the model under 

Hardy-Weinberg assumptions so they are ignored when found amongst observations 

(Corander et al., 2003). The same number can be used when there are haploid and 

diploid data in the same file together with phase information (for example autosomal 

and X chromosome loci in males). 

 

 
Figure 1: Example of the two possible input files formats to run in STRUCTURE. In option 1 the two alleles for each 

marker are introduced in different rows and in option 2 in different columns. As genotype data is submitted as 

numerical data a suggestion of conversion in SNP variation is shown. 
 

1.2 Creating a new project in STRUCTURE 

 

To create a new project the user selects the option New project in the File menu of 

the front-end version of STRUCTURE. The first step is to introduce information about 

the project as: name; output directory where the project and results will be saved and; 

input file with the genotype data. The second step provides information about the input 

file: number of individuals; ploidy of the data (by default assumed to be 2 = diploid); 

number of markers and; the value chosen to represent missing data. It is possible to 
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verify the number of rows and columns of the input data file in “Show data file format” 

(when using a file of the Option 1 type shown in Figure 1, there will be one row with M 

columns that represent the number of markers and 2S rows that corresponds to twice the 

number of sampled individuals). It is also necessary to indicate the information 

introduced in rows and columns. By default STRUCTURE assumes that the individual 

data is organized in two consecutive rows with each locus in one column. When this is 

not true (Option 2, Figure 1) it is necessary to select the “special format” option. It is 

also important to indicate the number of extra columns when they are present in the 

input file. Before creating the project file STRUCTURE presents a summary of the 

introduced information. If there are no errors the project will be created and the 

genotypic data will be visible in the front-end version of STRUCTURE. 

 

1.3 Creating a new analysis parameter set 

 

To create a new analysis parameter set the user selects the option New in the 

Parameter set menu of the front-end version of STRUCTURE. 

The first option is to decide how long to run a simulation. Here the user should take 

into account the burnin period (the time that the software runs before it starts to collect 

the data so as to minimize the effects of the initial configurations) and the time after the 

burnin period when the program runs, to obtain representative estimations of the 

parameters. Usually a burnin period of 10,000-100,000 is sufficient to observe data 

convergence where key statistical parameters (e.g. α) reach an equilibrium in the values 

produced. When excessive variation in parameter estimates is observed at the end of the 

burnin period it is necessary to increase the burnin time. The degree of variation of 

parameter values can be checked with the Data plot option (in the menu bar of the 

results window). Graphics such as the example shown in Fig. 2 are obtained and these 

allow the user to check the degree of variation during the run. 

 

 
Figure 2: Variation in alpha during increasing numbers of iterations in a run. This example used parameter set 3 (see 

section 5 for details): admixture model, allele frequencies correlated, POPFLAG=1. 

 

To select a suitable run length after the burnin it is best to perform several runs for 

each K value, where each run has a different number of MCMC steps, to check if the 

results obtained are consistent. Generally it is possible to obtain good estimates of the 

parameters with 10,000-100,000 MCMC steps but to obtain precise estimates of the 

posterior probability of each K value it is often necessary to perform longer runs. 

Following the above checks the user should select the ancestry model depending on 

the study objectives and data to analyse. Different models can be considered: no 

admixture or admixture models; with or without LOCPRIOR or considering the 

population information and reference samples; with or without linkage; using the 

population information to test for migrants. Ancestry models will be described in 

greater detail later (section 1.4, a). 

The user also needs to select an allele frequencies model depending on the study 

objectives and data to analyse. Two main models can be considered: correlated or 
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independent allele frequencies. Those two models are described in greater detail in 

section 1.4, b. 

Assessments of burnin, number of MCMC repeats, alpha, lambda or other 

statistical parameters can now be performed to guide adjustment of analysis factors to 

more appropriate values. After naming and creating the new parameter set this becomes 

the active file and a summary of its parameters is presented in the front-end. In addition, 

a tree with all the defined parameter sets is shown on the left side of the screen. 

 

1.4 Selecting an analysis model 

 

a) Ancestry models 

 

- NO ADMIXTURE MODEL (section 5, Fig. 9, parameter sets 1, 9, 17 and 

25). This model assumes that each individual has its origin in only one of 

the K populations and it calculates the posterior probability that the 

individual has of belonging to population k. This model is appropriate to 

study discrete populations, but as pointed out by Falush et al. (2003), this 

model has the obvious limitation that individuals may have recent ancestors 

in more than one population. 

 

- ADMIXTURE MODEL (section 5, Fig. 9, parameter sets 3, 11, 19 and 27). 

Admixture between populations is a common characteristic of real genetic 

data. This model considers that individuals can have an admixed ancestry 

such that each individual can inherit a fraction of their genome from 

ancestors in population k. Using this model users will be ignoring possible 

correlations in ancestry that occur in segments of each chromosome (Falush 

et al., 2003). The output file includes an approximate median posterior value 

of the inherited proportions for each individual and population (individual 

and population Q-matrices, see section 1.7). 

 

- LINKAGE MODEL (section 5, Fig. 9, parameter sets 5, 13, 21 and 29). 

Admixture can create increased linkage disequilibrium between markers 

that show different allele frequencies in the parental populations. The 

resulting linkage disequilibrium patterns are largely dependent on the 

admixture dynamics (Pfaff et al., 2001). The linkage model is a 

generalization of the admixture model designed to accommodate admixture 

linkage disequilibrium (Falush et al., 2003), i.e., it is able to deal with the 

correlations that appear between linked markers in recently admixed 

populations. The admixture model described by Pritchard et al. (2000a) 

considers only the mixture linkage disequilibrium (correlations among 

markers, even unlinked, due to variations in ancestry). Falush et al. (2003) 

incorporated the admixture linkage disequilibrium model (additional linkage 

disequilibrium between linked markers due to correlations in ancestry along 

each chromosome). However STRUCTURE ignores background linkage 

disequilibrium, which usually decays rapidly at a much shorter scale (tens of 

kilobases in humans) (Falush et al., 2003). The linkage model has the same 

characteristics as the admixture model but it considers that all the alleles in 

the same region (linkage group) have an origin in the same ancestral 

population. This model works better than the original admixture model 

when linked markers are being used to study admixed populations. The user 
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should take into consideration that the linkage model was not designed to 

handle linkage disequilibrium between markers that are very tightly linked. 

Furthermore this model can only be used when the information about the 

relative position of the markers (e.g., an accurate genetic map) is available. 

- USING PREVIOUS INFORMATION ABOUT THE POPULATIONS: by 

default STRUCTURE only uses genetic information to study population 

structure. However additional information can be useful and is readily 

applied to an analysis when using STRUCTURE to cluster individuals into 

groups. 

 

 LOCPRIOR models: use of the sampling location as default 

information to assist clustering (use with sets of data with weak 

structure signal) (section 5, Fig. 9, parameter sets 2, 4, 10, 12, 18, 20, 

26 and 28). Select the “Use sample location as prior (LOCPRIOR)” 

option on the Ancestry Model tab under the no admixture or 

admixture models. These models allow the correct inference of the 

population structure and ancestry when the sets of data used have 

weak structure signals that cannot be detected by basic models 

available for STRUCTURE (Hubisz et al., 2009). LOCPRIOR models 

assume that individuals from the same sampling location usually 

belong to the same population, so sampling locations are treated as 

informative for ancestry. Furthermore, these models have several 

favourable characteristics: 1) generally they do not find population 

structure when this is not present; 2) they ignore information about 

sampling location when individual ancestry is not correlated (Hubisz 

et al., 2009); 3) when the population structure signals are strong the 

LOCPRIOR and default models generally provide the same results for 

the genetic data. 

 

Informativeness of the sampling location data (r): this a posteriori parameter is 

useful to detect if the location labels are informative or not for ancestry in the data set 

tested. When r>>1 the location labels are uninformative about ancestry. But small 

values of r indicate the ancestry proportions vary substantially amongst locations, i.e. 

the location information is potentially very informative (Hubisz et al., 2009). 

 

Although this model can be used for data sets with few markers or 

individuals, it is important to consider the collective informativeness 

of the study markers before applying this model to assist sample 

clustering. For example, Bouazake et al. (2009) studied ancestry in 

ancient DNA with just four ancestry informative genetic markers, but 

they gave sufficient power to provide sufficient information about 

individual bio-geographical origin.  

The sampling location model is also readily applied when 

individuals can be classified into discrete groups on the basis of a 

phenotypic characteristic, ecotype or ethnic group (Hubisz et al., 

2009). Under this model the information provided by phenotypes can 

be used to detect population structure in case-control studies, as 

outlined later in this guide (section 4). The phenotype must be marked 

in the corresponding column of the input file. The column 

“phenotype” contains numeric values (integers) corresponding to the 
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presence or absence of one (or several) characteristics of interest, i.e. 

characteristics of case and control samples. This option provides an 

interface to be used with the STRAT post-hoc analysis software.  

 

 USEPOPINFO model: use of the sampling location to test for 

migrants or hybrids – only applicable with very informative 

genetic data (section 5, Fig. 9, parameter sets 6, 7, 8, 14, 15, 16, 22, 

23, 24, 30, 31 and 32). On some occasions the user can observe that 

the pre-defined groups or sampling locations correspond almost 

exactly to the groups defined by STRUCTURE with the exception of 

some individuals that seem to be misclassified. This model assumes 

that the pre-defined populations for each individual (PopData) are 

usually correct. Select “Use population information to test for 

migrants” option in the Admixture Model tab. It is possible to indicate 

the number of generations and migration rate and also to choose 

between the admixture, no admixture or linkage models. 

 

 USEPOPINFO model: previous specification of the population of 

origin of some individuals to help infer the ancestry of individuals 

with unknown origin (section 5, Fig. 9, parameter sets 1-16). With 

this model it is possible to define learning samples with pre-defined 

population-of-origin in particular groups. STRUCTURE then attempts 

to group the remaining individuals. The learning samples are defined 

in the input column PopFlag (select “update allele frequencies using 

only individuals with POPFLAG=1 data” in the Advanced tab when 

creating a new parameter set). When PopFlag=0, the PopData value 

will be ignored and the ancestry of those individuals will be updated 

taking into account the admixture or no admixture model, as selected 

by the user. When there are only a few individuals with no pre-defined 

population it might be useful to adjust alpha (α) by running 

STRUCTURE with a basic model and obtaining an estimated value. 

Furthermore, the user should run the basic model in the first place to 

confirm that the pre-defined classification corresponds to real genetic 

populations. As discussed by Hubisz et al. (2009), the basic models 

assume a priori that all partitions of the N individuals into K 

populations are equally likely and that strong statistical evidence 

should be established to support any particular partition. To avoid 

confusion with the previous USEPOPINFO model we herein refer to 

applying USEPOPINFO described in this paragraph as simply 

POPFLAG. 

 

Alpha (α) is a Dirichlet parameter that reflects the relative admixture levels 

between populations (Hubisz et al., 2009). When α>>1 each individual’s alleles has 

their origin in all K populations in comparable proportions, so the individuals are highly 

admixed. For values of α<<1 each individual has its origin mainly in one population 

(and each population is equally probable). When α is near 0, the models resemble the no 

admixture model (Falush et al., 2003;Evanno et al., 2005). Using different values of α 

for each population can help obtain more accurate ancestry estimates since usually not 

all populations are equally represented in the sample (Falush et al., 2003). 
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b) Allele frequency models 

 

- INDEPENDENT ALLELE FREQUENCIES MODEL (section 5, Fig. 9, 

parameters sets 9-16 and 25-32). This model is based on the assumption that 

allele frequencies for a limited number of markers are not expected to be 

correlated within a population. Furthermore, ancestral relationships between 

clusters is not expected (Rosenberg et al., 2005). In this way, allele 

frequencies in each population are the result of a distribution specified by 

lambda (by default this parameter equals one. The model therefore expects 

allele frequencies show some differentiation between distinct populations. 

 

- CORRELATED ALLELE FREQUENCIES MODEL (section 5, Fig. 9, 

parameter sets 1-8 and 17-24). This model uses a multidimensional vector 

that records the allele frequencies in one hypothetical ancestral population. 

It is assumed that each of the K populations represented in the sample 

underwent drift from a common ancestral population and that rates of drift 

varies between populations due to different effective population sizes 

(Falush et al., 2003). Therefore it can be expected that closely related 

populations show very similar allele frequencies (Falush et al., 2003) and 

the alleles in different clusters have correlated frequencies due to shared 

ancestry (Pritchard et al., 2000a;Rosenberg et al., 2005). For this reason 

using the correlated allele frequencies model in STRUCTURE provides extra 

flexibility allowing increased power to detect distinct populations even 

when they are closely related due to recent shared ancestry (Falush et al., 

2003;Rosenberg et al., 2005).  

In fact, it is usually the case that the correlated and uncorrelated allele 

frequencies models produce similar results. Differences are only obtained 

when there is a high level of correlation across populations (Rosenberg et 

al., 2005). 

 

Lambda (λ) is the parameter of the distribution of allele frequencies (Evanno et al., 

2005) that quantifies the prior allele frequencies. Fixing λ=1 is the appropriate default 

value for the great majority of data but in certain cases (e.g., SNP data where the minor 

allele is normally very rare) lower values are more appropriate and work better (Falush 

et al., 2003). So it is possible to infer λ from an initial basic STRUCTURE run and then 

apply the estimated value on the following simulations as detailed above for alpha. 

 

1.5 Running a simulation 

 

There are two different ways to run a simulation: 

 

a) Run a single K value: in the Parameter Set menu of the front-end version select 

Run. Define the number of assumed populations (K). The software starts the simulation. 

 

b) Create a simulation job: in the Project menu of the front-end version of 

STRUCTURE select Start a Job. Select the parameter set(s) to analyse and define the 

number of assumed populations (K) and the number of iterations for each K. The 

software starts the simulation and a window with the job progress appears. As described 

in the FAQ section of the Google group forum devoted to STRUCTURE 

(http://groups.google.com/group/structure-software/web/faq) this can result in a stalled 

http://groups.google.com/group/structure-software/web/faq
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run if the user failed to create a parameter set or to restart STRUCTURE after the initial 

installation. A simple solution is to close and restart the front-end before starting the 

job, that is, first create the new project and the desired parameter sets, then close the 

STRUCTURE window, restart the software and open the project. Then go directly to the 

Project menu and start a job (it is not necessary to activate a parameter set before 

starting the job). 

 

A regular point of discussion is the number of possible K’s to run. Evanno et al. 

(2005) advise a suitable range is from K=1 or 2 up to the true number of populations 

plus 3. Multidimensional Scaling (MDS) methods such as Principal Component 

Analysis (PCA) are a good alternative to make an estimation of the number of clusters 

discernable in the genetic data and therefore to use in STRUCTURE (Patterson et al., 

2006). 

 

1.6 Choosing the number of iterations 

 

A common uncertainty when running a simulation is the number of iterations 

appropriate for each K value since different runs can produce different likelihood 

values. 

To analyze the certainty of the estimates obtained with STRUCTURE we performed 

several replicates of the same analysis. We used the HGDP-CEPH Human Genome 

Diversity Panel samples from five population groups (Africa, Europe, East Asia, Native 

America and Oceania) with a set of 59 SNPs originally selected to differentiate those 

five ancestry components. Firstly we ran five replicates for K=2 to K=7 with a 200,000 

burnin period and 200,000 MCMC repeats after burnin using the admixture model and 

considering independent allele frequencies. After calculating the optimum K value, 

which was K=5 (data not shown), we performed another 95 iterations of the analysis for 

K=5. We used the values of the major ancestry component when classifying a 

determinate population to calculate the standard deviation of the median value across 

iterations, i.e., considering one iteration, two iterations, three iterations, and so on. 

Those standard deviation values were plotted for each of the five ancestry components 

(Fig. 3a). The same procedure was followed using the Ln P(K) (Fig. 3b), a measure of 

the probability of the K estimates (see section 1.9). From this analysis we can conclude 

that when we perform a small number of iterations, the standard deviation associated 

with each ancestry membership component is higher than when we perform more 

iterations. We therefore consider it is advisable to do a minimum 20 to 30 iterations to 

obtain reliable estimates of the ancestry membership proportions of a population.  
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Figure 3: standard deviation variation with the increase of the number of iterations performed. a) variation of the 

standard deviation associated with the major ancestry membership proportion for each ancestry component 

(considering a five group comparison); b) variation of the standard deviation associated to the Ln P(K). 
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1.7 Analysing the results 

 

When the simulations have been completed results files are created (one for each 

run). They are organized in a tree on the left side of the front-end (Fig. 4a) and when the 

user selects a file the results are listed. 

 

 

 
 

Figure 4: Screen captures of STRUCTURE front-end after running simulations. See section 5 for more information 

about the parameter sets. a) The parameter set tree listing result files; b) example of lnPr (X|K) values and other 

statistical parameters (parameter set 3, K=4); c) example of a population Q-matrix (parameter set 3, K=4); d) 

beginning section of the individual Q-matrix using, left pane: the admixture model (parameter set 3, K=4) and right 

pane: the POPINFO model (parameter set 7, K=4). 

 

The results file contains several information outputs: 

 

a) Ln Pr (X|K) value This is an estimate of the posterior probability of the 

simulation (Estimated Ln Probability of Data – Fig. 4b). This value is used to estimate 

the number of populations detected in the sample. 

 

b) Population Q-matrix This data set presents the calculated proportions of 

membership of each pre-defined population in each of the K clusters. Considering the 

example shown in Fig. 4c: seven populations were analysed for K=4, where populations 

1, 2, 3 and 4 were considered “reference populations” (PopFlag=1) and populations 5, 6 

and 7 were “study populations” (PopFlag=0). In this case each cluster will define a 

particular reference population, that is, each population will have a high ancestry 

membership proportion in one cluster – cluster 1 defines population 2, cluster 2 defines 

population 4, cluster 3 defines population 3 and cluster 4 defines population 1. On the 

other hand, populations 5 and 7 have admixed ancestry with major components of 

ancestry from populations 2 and 4, and population 6 has admixed ancestry with major 

components of ancestry from populations 2 and 3. In the example shown, population 5 

has the following membership proportions in each cluster: 0.430, 0.377, 0.155, 0.038. 

So population 5 represents an admixed population with 43.0% of ancestry from 

population 2, 37.7% of ancestry from population 4, 15.5% from population 3 and 3.8% 

from population 1. 

 

c) Individual Q-matrix This data listing presents the inferred ancestry components 

of each individual in each of the K clusters when using the admixture model or the 
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membership probability when using the USEPOPINFO model (Fig. 4d). Interpretation 

of this data is similar to that of the population Q-matrix but using the admixture model 

it is possible to estimate the ancestry membership proportions of each individual. When 

using the POPINFO model the individual results are presented as the probability of 

originating from the assumed population versus the probability of having origins from 

each of the other populations. In this case asterisks after the probabilities indicate 

misclassified individuals. 

 

Other population genetic information including FST values and allele frequencies are 

presented. 

 

1.8 Representing the results graphically 

 

The estimated membership coefficients of the analysed individuals in each group 

can be represented in two different types of plots: 

 

a) Bar plot Each individual of the sample is represented by a vertical line divided 

into K coloured segments with the length of each segment being proportional to the 

estimated membership in each of the inferred K groups (Fig. 5a). This graphic can 

represent the data set as a set of population groups or more detail can be obtained by 

opting for individual sample information. If the plot in multiple lines option is selected 

it is possible to observe individual bar plot representations. To access this graphic select 

Bar plot in the menu bar of the results window in the front-end version. 
 

b) Triangle plot Each individual is represented as a coloured point in one or a 

series of triangles (Fig. 5b). Each colour corresponds to the population label associated 

in the input data file. The estimated ancestry vector for each individual consists of K 

components that sum to one. Proximity to any one triangle vertex corresponds to a high 

membership value for the population denoted by the vertex so this type of graphic is 

particularly useful to represent K=3 data since ancestry vectors can be represented in a 

single plot where each of the three components is given by the distance to each of the 

triangle vertices. When there are K>3 clusters, populations are combined to form a 

single vertex (as shown for populations 2, 4-7 for K=4 in Fig. 5b). Therefore, although 

triangle plots allow straightforward visualization of the data for K=3, for K>3 bar plots 

are generally easier to read. To access this graphic select Triangle plot in the menu bar 

of the results window in the front-end version. 
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Figure 5: Analysis parameters: Parameter Set 3 (see section 5 for details) - admixture model, allele frequencies 

correlated, POPFLAG=1. a) bar plot representation for K=4. b) triangle plot representation for K=4. 

 

c) Statistical parameters plots In the menu bar of the results window in the front-

end version it is also possible to select Data plot or Histogram. Those graphics present 

some of the statistical parameters calculated throughout the simulation that can be 

useful when assessing the quality of the estimates obtained from the run. 

 

1.9 Estimating K, the number of populations 

 

This aspect of STRUCTURE analysis requires careful consideration as it is difficult 

to obtain a precise estimate of Pr(X|K), since the estimated K value can often depend on 

the model used to analyse the data (Falush et al., 2003). The method implemented in 

STRUCTURE only permits an ad hoc approximation, i.e., with a particular purpose. 

Furthermore, the biological interpretation of K might not be straightforward. So the best 

strategy is to focus the analysis of a K value that captures the majority of the structure 

present in the data and that can be inferred to be biologically reasonable. As pointed out 

by Rosenberg et al. (2005) several factors can influence clustering, including: the 

number of markers typed; sample sizes; the number of clusters and; allele frequency 

correlations. 

 

a) Estimating K. To estimate K it is necessary to allow α to vary during the 

simulations and to run STRUCTURE for different K values. For each simulation a 

posterior probability value (“Estimated Ln Prob of Data” or lnPr(X|K)) is calculated. 

The user needs to verify if these estimates are consistent between different runs so it is 

advisable to perform several independent simulations for each K value. With these 

values it is possible to calculate the posterior probability for each K (Pritchard et al., 

2000a): 

 

 
 

When there is real population structure it is possible to find linkage disequilibrium 

between unlinked markers that will lead to deviations in the Hardy-Weinberg 
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proportions, but the existence of endogamy or genotyping errors (e.g., undetected null-

alleles) can have the same effect. 

 

b) Selecting the appropriate K value from the data. Usually Pr(K) values are small 

for estimates of K below the appropriate estimate of populations, while Pr(K) values 

tend to stabilize with bigger K values. Thus Pr(K) values that follow from the most 

appropriate value create a plateau of values. Evanno et al. (2005) describe a method to 

estimate K based on the second order rate of change of the likelihood function with 

respect to K. Their method was implemented in the program Structure Harvester (Earl 

and vonHoldt, 2012) that calculates delta K and plots the median value of lnPr(K) for 

each K (Fig. 6). The only requirements are the use of at least three sequential K values 

and the same number of replicates (>1) for all K values. Delta K should be used together 

with the logarithm probability of K, alpha value and the individual assignment patterns 

(Evanno et al., 2005). 

 

 
Figure 6: Graphic representation of the estimated probability of data for each K value. Analysis parameters: 

Parameter Set 3 (see section 5 for details) - admixture model, allele frequencies correlated, POPFLAG=1, with three 

replicates for each K value. a) the median and variance of the estimated probability value for each K value. It is 

possible to observe a plateau after K=4. b) delta K calculated by the Evanno et al. (2005) method. The maximum 

value is observed at K=4. 
 

When several K values have similar Ln Pr(X|K) estimates it can be inferred with 

reasonable certainty that the smallest is the most appropriate for the data (in Fig. 6a this 

is K=4). Although it is not always possible to know the real K value the user should 

always select the lowest value of K that captures the maximum degree of structure 

detected in the data. Furthermore when there is no population structure the proportion of 

each individual assigned to each population is roughly symmetrical (~1/K in each 

population) and the individuals are equally admixed. If some of the individuals are 

strongly assigned to one population or if the proportions assigned to each group are 

asymmetrical there is strong evidence that real population structure exists. 

In summary, the user should be guarded about population structure inferred from 

very small differences of Pr(K) and when there is no clear biological interpretation to 

assignments of K. Likewise when there is approximately symmetrical membership 

proportions between groups and individuals are not clearly assigned to any one group it 

is very likely that no population structure is present in the sample. 
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2. CLUMPP: CLUster Matching and Permutation Program version 1.1.2 

(http://www.stanford.edu/group/rosenberglab/clumpp.html, (Jakobsson and Rosenberg, 

2007)) 
 

Because replicating STRUCTURE runs creates stochastic effects it is particularly 

important to simplify the assessment of replicate data by calculating medians. CLUMPP 

analyzes the results from replicated STRUCTURE runs by collating all the data into a 

matrix (the Q-matrix) of individual membership co-efficients and population ancestry 

components. 

 

2.1 Parameters included in the CLUMPP algorithms 

 

K is an integer that represents the number of groups. 

C is an integer that represents the number of populations or individuals (individual 

matrix – DATATYPE=0; population matrix – DATATYPE=1) being studied. 

R is an integer that represents the number of Q matrices or runs that are aligned. 

 

A Q-matrix is a C x K membership coefficient matrix resulting from the analysis of 

a K value (number of assumed populations in STRUCTURE) with C rows corresponding 

to the numbers of individuals or populations and K columns corresponding to distinct 

assumed population groups. CLUMPP tries to maximize the similarity measure: G 

between Q matrices from R replicates. Using the G values it is possible to calculate the 

median similarity value through pair comparison: H. A second function of similarity, 

G’, is standardized to vary between 0 and 1. A median similarity value is calculated 

from G’ denoted by: H’. 

 

M is an integer that represents the algorithm used to align the different runs. 

Possible values are: 1 (FullSearch algorithm), 2 (Greedy algorithm) and 3 

(LargeKGreedy algorithm). CLUMPP uses these three algorithms to search the 

optimum alignment of the R replicates. In decreasing order of the scope of the search 

made and in increasing order of computational speed the algorithms are: 

- FullSearch – this calculates H to all possible alignments of the K groups in the R 

replicates. Considering all possible permutation vectors the FullSearch algorithm 

calculates the median similarity value and returns the permutation vector that 

maximizes the symmetric similarity coefficient. Despite having a slow computation 

speed it guarantees the optimum alignment of groups in the multiple runs will be 

found. 

- Greedy – this calculates all possible permutations for each run but the number of 

G computations performed for each permutation is r-1 (r is between 2 and R). As the 

order in which the runs are considered can affect the results the user should perform 

different run sequences. CLUMPP offers three distinct options to test different 

sequences: to test all the sequences, to test a predefined number of random sequences 

and to test a specific set of sequences defined by the user. 

- LargeKGreedy – when K>15 the number of permutations is very large and it 

becomes impractical to calculate G for all permutations of a particular pair of Q 

matrices. So a proportion of the possible permutations are tested. As with the Greedy 

algorithm, the order in which runs are considered can affect the results and the same 

three options to select the sequence of runs are available. 
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W is a Boolean type variable that it is used when the data comes from populations 

with different number of individuals (as indicated in the last column of the popfile data 

file). It is possible to calculate H (or H’) taking into account the “weight” of the number 

of individuals in each population. As it is a Boolean type variable, W can assume the 

values: 0 when the number of individuals in each population is not used, i.e., all 

populations have the same weight or 1 when the alignment takes into account the 

number of individuals in each population. This information is only relevant when 

DATATYPE=1, i.e., when population data is being analysed. When DATATYPE=0 

this option (W) is automatically inactivated. 

 

S is an integer that represents the pairwise similarity statistic. Possible values of S 

are 1 for the G statistic and 2 for the G’ statistic. 

 

The authors usually opt to use M=1, W=0 and S=2, but for more information about 

the possible combinations between algorithms plus the GREEDY_OPTION and its use 

we recommend further review of the software manual. 

 

2.2 Running CLUMPP 

 

CLUMPP uses the STRUCTURE output Q matrices. Files should be opened with a 

text editor and it is very important to keep the file extensions intact otherwise CLUMPP 

will not then recognize them. 

The first step is to create the input files by copying the population Q matrices from 

the results files of each STRUCTURE replicate for the same K value and pasting them 

into the popfile file, leaving a blank line between each matrix. This operation is repeated 

with the individual Q matrices by pasting them into the indfile file. Structure Harvester 

output provides ready-to-use indfile and popfile files from each K value for CLUMPP. 

Next the parameters of analysis need to be defined. In the paramfile modify 

DATATYPE, K, C, R and M (in most cases we recommend the FullSearch algorithm) 

accordingly to the data. A separate run should be made to obtain the population and the 

individual permutated matrices. So the user should define DATATYPE=0 and 

C=number of individuals when creating the individual permutated Q-matrix. In the case 

of the population permutated Q-matrix, DATATYPE should be equal to 1 and C to the 

number of populations. To run the program the user selects the executable file. The 

permutated table will be created in the outfile file. The user should copy the population 

table to a new file before initiating the second run to obtain the individual table or 

change the OUTFILE name in the paramfile. Take into account that the individual’s 

label in STRUCTURE is an alphanumerical code but CLUMPP will report an error 

when trying to execute the program to create the individual permutated Q-matrix. So we 

advise the removal of the letters from any labels (this is automatically done by Structure 

Harvester). The resulting tables are then used by distruct to generate the bar plots. 
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3. Distruct: a program for the graphical display of population structure 

version 1.1 (http://www.stanford.edu/group/rosenberglab/distruct.html (Jakobsson and 

Rosenberg, 2007)) 
 

To run distruct the user can apply the results from STRUCTURE or from CLUMPP 

analyses obtained as described above. As with CLUMPP, files should be open with a 

text editor and due regard made not to change the file extension. 

The first step is to create the input files by copying the population Q-matrix from 

the result file of STRUCTURE or CLUMPP and pasting into the popq file. This process 

is repeated with the individual Q-matrix pasted into the indivq file. In the files names 

and languages the names to be printed respectively below and above the graphic are 

defined – in separate rows write the numeric code that corresponds to each population 

followed by a space and the desired name. In the file perm it is possible to define the 

colour associated to each population group. The user should indicate the same number 

of colours as K assumed populations, in different rows writing the number that 

identifies each results group (each column of the population Q-matrix) followed by the 

code that identifies the desired colour. A complete list of colours and their codes is 

available in the software help file. Finally, in the drawparams file it is possible to define 

the analysis parameters. There are several parameters that can be changed but the most 

important for the program to run are K (number of assumed populations), NUMPOPS 

(number of populations) and NUMINDS (number of individuals). All other parameters 

define graphical characteristics: letter size, distance between the text and the graphic, 

height of the graphic, thickness of the columns that represent individuals, thickness of 

the outline, vertical/horizontal orientation, and other factors. After each parameter the 

symbol “//” indicates that the following text are commentaries that will not be used by 

the program and explaining each of the parameters. 

In the distruct folder there are two files that allow the program to run: an executable 

file and an MS-DOS file. The difference between them is that the executable file 

automatically closes at the end of the computations while the MS-DOS file opens a 

command line window that remains open and where some results are presented. Opting 

for the MS-DOS file can be particularly useful since it allows the user to see if errors 

have occurred during the run. When distruct finishes the run the PS file will be changed. 

That file can be opened with dedicated programs such as GhostView to view the results 

(example in Fig. 7). 

 

http://www.stanford.edu/group/rosenberglab/distruct.html
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Figure 7: Estimated membership proportions represented in bar plots obtained directly with STRUCTURE (top) or 

processed with CLUMPP and distruct (bottom). Analysis parameters: Parameter Set 3 (see section 5 for details) - 

admixture model, allele frequencies correlated, POPFLAG=1, K=4. Note the existence of label change multimodality 

between the different replicates in STRUCTURE (for more information about multimodality see the main article). 
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4. STRAT: STRuctured population Association Test version 1.1 

(http://pritch.bsd.uchicago.edu/software/STRAT.html (Pritchard et al., 2000b)) 
 

When analyzing case-control studies it is important to check that no substructure 

exists as this could lead to spurious associations, the most common source of false 

signals of association, especially when the sample contains two populations. The 

program STRAT is designed to apply STRUCTURE analysis to test for presence of 

substructure in case-control sample groups. 

To use STRAT a version of STRUCTURE should be installed (or the result folder 

from a STRUCTURE analysis) along with the STRAT program. 

The following guidelines provide the steps to run STRAT: 

1) Run STRUCTURE following the previous suggested steps. It is important to 

verify that the option PrintQhat (in the Advanced tab), which specifies the 

essential data to run STRAT, is selected when creating a new parameter set for 

the analysis. 

2) STRUCTURE implements two models of allele frequencies: the default model 

assumes that the underlying allele frequencies in different populations are 

independent (and thus usually quite different). A second model assumes that 

the allele frequencies are all close to the mean frequency in the sample (for 

this model set FREQSCORR=1 in the extraparams file). For human data sets 

in which the populations are from different continents the first model works 

well. However, when considering closely related populations (e.g. Chinese 

and Japanese), STRUCTURE does not perform well under the default model, 

often grouping all the individuals into one population. However applying the 

model with FREQSCORR=1 produces accurate assignments. Also, in such 

cases, if there is little admixture, the model without admixture 

(NOADMIX=1) tends to produce better results. 

3) Copy the project_data file from the STRUCTURE results directory to the 

STRAT folder – this is the INPUT file that contains the genotypes of both case 

and control samples and includes additional information on ancestry. A 

column with numerical data specifying which samples correspond to cases 

and controls can also be added. These case-control samples may have one or 

more phenotypic variables that are the object of study. 

4) The output q-file from STRUCTURE is used as a second input file in STRAT. 

The text files mainparams and extraparams that are the same as the 

STRUCTURE results are also necessary for STRAT to run so they should be 

copied to the STRAT folder. 

5) The two input files should be indicated in the mainparams file – the 

project_data in the define INPUT entry and the STRUCTURE results file 

(xxx_run_1) in the define OUTPUT entry. Using these two files it is possible 

to start running STRAT. 

6) It is better to run STRAT from the command line: change the directory (cd + 

pathway to STRAT folder + Enter) and then execute the software (type STRAT 

and Enter). 

7) The software outputs, in the command line window and in the output file 

xxx_run_1_p (in the STRUCTURE results folder) form lines of data as shown 

by the following example: 

 

63: chisq= 5.796 1 df; TS = 0.41, p = 6.84000e-01. 

 

http://pritch.bsd.uchicago.edu/software/STRAT.html
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This line gives the locus-number in the input file (63), the value of the chi-

square test of association assuming no population structure (5.796), the 

number of degrees of freedom (1), the value of the STRAT test-statistic (0.41), 

and the STRAT p-value (6.84000e-01). The p-value is represented in scientific 

notation: the p-value here is 6.84×10
−1

. Asterisks are printed at the end of the 

line for small p-values. Then STRAT will produce a table of expected 

probabilities of the simulated p-values under the assumption of no population 

structure. The output test statistic values are calculated as suggested by 

Pritchard and Rosenberg (1999) (Pritchard and Rosenberg, 1999) for testing 

whether the case and control samples are mismatched and hence population 

structure is a possible compounding factor. 

8) A summary of the estimated allele frequencies is printed into the output file 

xxx_run_1_fr. It shows the allele frequencies for biallelic markers, assuming 

two populations and two phenotypes. 

 

5. An applied example 
 

An example file (Supplementary Table 1) was created with 487 individuals (100 

Africans: CEPH AFR, 158 Europeans: CEPH EUR, 165 East Asians: CEPH EAS, and 

64 Native Americans: CEPH NAM) from the HGDP-CEPH panel of samples. An 

artificial case-control group was created using Mexican and Puerto Rican samples from 

HapMap: in total 67 samples divided in Cases 1 (C1), Cases 2 (C2) and Controls (Ct). 

Different SNP markers were used: 9 AIM-SNPs (two of them triallelic), 3 phenotype 

associated SNPs and 5 AIM-SNPs on the X-chromosome. The phenotype and the X-

SNPs are linked forming two distinct linkage disequilibrium groups – their genetic 

distance was used to define linkage disequilibrium groups. 

As an initial analysis of the data, a PCA was generated using a homemade script in 

R v2.13.1 (Fig. 8). The first principal component explains 27.77% of the information 

contained in the data set and the second principal component explains 20.20%. It is 

possible to observe that the HGDP-CEPH individuals can be grouped into four main 

groups, as would be expected from their known origins and that Case 1 samples present 

a greater overlap with the Control samples than the Case 2 samples. 
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Figure 8: Principal Component Analysis plot of the samples under study. 
 

A large number of parameter combinations were used to analyse the samples in 

STRUCTURE (Table 1). Each parameter set was analysed with three replicates for K=2 

to K=7 and all runs were performed with 100,000 burnin period and 100,000 MCMC 

repeats after burnin. The optimum K value was assessed through the analysis of the Ln 

P(D) distribution plots and delta K values from Structure Harvester (Earl and vonHoldt, 

2012). Bar plots of K=4 were constructed with CLUMPP, to align the three replicates, 

and distruct. Special care should be taken with the parameter sets using POPINFO 

ancestry models, as the individual Q-matrix represents estimated probabilities (and not 

ancestry membership proportions) the table does not have a format suitable to use with 

CLUMPP and distruct. From the above analyses K=4 bar plots for parameter sets 6-8, 

14-16, 22-24 and 30-32 were obtained directly from STRUCTURE. The bar plot 

corresponding to the K=4 replicate with an intermediate value of estimated Ln P(D) was 

used and image editing was applied to match colours between plots. Complete results 

from these simulations can be found in Figure 9. 
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Table 1: Parameter set used in different STRUCTURE simulations. 

 

STRUCTURE simulations 

Parameter Set  PopFlag  Allele Frequencies Model  Ancestry Model 

1  On  Correlated  No Admixture 

2  On  Correlated  No Admixture LOCPRIOR 

3  On  Correlated  Admixture 

4  On  Correlated  Admixture LOCPRIOR 

5  On  Correlated  Linkage 

6  On  Correlated  POPINFO No Admixture 

7  On  Correlated  POPINFO Admixture 

8  On  Correlated  POPINFO Linkage 

9  On  Independent  No Admixture 

10  On  Independent  No Admixture LOCPRIOR 

11  On  Independent  Admixture 

12  On  Independent  Admixture LOCPRIOR 

13  On  Independent  Linkage 

14  On  Independent  POPINFO No Admixture 

15  On  Independent  POPINFO Admixture 

16  On  Independent  POPINFO Linkage 

17  Off  Correlated  No Admixture 

18  Off  Correlated  No Admixture LOCPRIOR 

19  Off  Correlated  Admixture 

20  Off  Correlated  Admixture LOCPRIOR 

21  Off  Correlated  Linkage 

22  Off  Correlated  POPINFO No Admixture 

23  Off  Correlated  POPINFO Admixture 

24  Off  Correlated  POPINFO Linkage 

25  Off  Independent  No Admixture 

26  Off  Independent  No Admixture LOCPRIOR 

27  Off  Independent  Admixture 

28  Off  Independent  Admixture LOCPRIOR 

29  Off  Independent  Linkage 

30  Off  Independent  POPINFO No Admixture 

31  Off  Independent  POPINFO Admixture 

32  Off  Independent  POPINFO Linkage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 First page: plots with the Ln P(D) median values for each K are presented to estimate the optimum number 

of populations under each of the simulated parameter sets (see Table 1). Second page, bar plots representing K=4 for 

each parameter set are presented. These were obtained with CLUMPP, to align the three replicates for K=4 (all runs 

were performed with 100,000 burnin period and 100,000 MCMC repeats after burnin), and distruct. The exception 

were the POPINFO parameter sets for which direct STRUCTURE bar plot outputs were used (K=4 replicate with 

intermediate Ln P(D) value) together with image editing to match colours. 
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The optimum K value was 4 for almost all parameter sets, although parameter sets 

6, 7, 8, 14, 15 and 16 (those corresponding to the POPINFO models with POPFLAG 

on) present some signals where the optimum K equals 3. Results for K=3 are plotted in 

Fig. 10 as described previously and are presented as a comparison point to the K=4 bar 

plots. 

 

 

Figure 10: STRUCTURE analysis of the test study data set with parameter sets 6, 7, 8, 14, 15 and 16. K=3 bar plots 

are presented for comparison with K=4. 

 

The case-control samples were analysed with STRUCTURE followed by a STRAT 

test to evaluate if significant differences are discernable between Cases 1 or Cases 2 and 

the Controls. The STRUCTURE analysis was performed with 100,000 burnin period and 

100,000 MCMC repeats after burnin for the no admixture and admixture models 

considering the correlated allele frequencies model. Each parameter set was analysed 

with three replicates for K=1 to K=5. The optimum K value was assessed through the 

analysis of the Ln P(D) distribution plots from Structure Harvester (Earl and vonHoldt, 

2012). For all analyses the optimum K value was equal to 2 – barplots for this K value 

were designed using CLUMPP and distruct. STRAT analysis was performed as 

described in section 4 using the default parameters. Only results for the no admixture 

model are presented (Fig. 11). 
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Figure 11 A case-control sample analysis presenting Ln P(D) distribution plots, STRUCTURE bar plots and STRAT 

table results. a) Case 1 (C1) are compared to the Control (Ct) samples; b) Case 2 (C2) are compared to the Control 

(Ct) samples. 
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6. Discussion and final remarks 
 

STRUCTURE software allows the comparison of populations taking into account 

typed genetic variables. For example, it is possible to infer ancestry components of a 

population or individual with respect to reference populations or, when a phenotypic 

variable is compared, the STRAT algorithm can be applied for the analysis of 

stratification. The use of a Bayesian method such as STRUCTURE offers some 

advantages especially in the context of the classification of admixed individuals since it 

allows the use of prior information that can be informative to assist the calculation of 

ancestry proportions for these individuals. In this way any information on data, the 

markers selected and the type of analysis desired is relevant before the selection of the 

analysis parameters before initiating a STRUCTURE run. 

As described in detail in section 1.4, STRUCTURE implements different analysis 

models whose selection depends on the data and study objectives. Therefore, this guide 

centres on the effect changes in such models and prior information can have on the 

results. 

The two most contrasting ancestry models are the no admixture and admixture 

models. If there is no prior knowledge about the origin of the populations under study or 

if the user suspects that they are completely discrete then the no admixture model is 

suitable. However admixture between populations is a common characteristic of real 

data such that individuals may have recent ancestors in more than one population. In 

these cases knowing the approximate median value of the inherited proportions for each 

individual and/or population can be important data for the population studies being 

made. In this case the admixture model is more appropriate. These two models can also 

be used considering the sampling location information (LOCPRIOR model) to assist the 

clustering process made by STRUCTURE. This option can be used when there is 

linguistic, geographical, cultural or other phenotypic information available for the 

population under study and it is particularly informative when there is a weak structure 

signal. 

Another model, the linkage model, is based on the admixture model so it can be 

used under the same assumptions but it was specially designed to deal with admixture 

linkage disequilibrium, particularly to study admixed populations. This model was 

presented by Falush et al. (2003) and it allows more accurate estimates of statistical 

uncertainty when linked loci are used. As for other parameters, it is important to know 

the markers used – in this particular case information about the degree and context of 

linkage of the genetic markers typed in the study. 

No admixture, admixture and linkage models can also be analysed as part of the 

USEPOPINFO model when the data set is very informative. This model uses the 

sampling locations to test for migrants or hybrids so it should be used with caution – but 

is appropriate when the user is sure about the sampling locations and they correspond 

almost exactly with the groups defined by STRUCTURE. The disadvantage of the 

USEPOPINFO model arises with the posterior manipulation of the results. The 

individual Q-matrix comprises probabilities (and not ancestry membership proportions) 

that are presented in a format that is incompatible with CLUMPP or distruct. 
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All the models considered up to now can be used in conjunction with the 

POPFLAG model. POPFLAG considers specific information about the population of 

origin of certain reference individuals to help infer the ancestry of individuals with 

unknown origin. This option should also be used with caution because the selected 

reference samples are treated as learning samples and the allele frequencies will be 

based only on these individuals – which can strongly affect the grouping of the 

unknown individuals. This is an artificial model that assesses the individual probability 

of being part of a particular population. Such an approach can be useful if the objective 

is to group individuals/populations in comparison with a well-defined and studied 

reference data set. When this model is used in conjunction with the USEPOPINFO 

model the individual Q-matrix is composed of two distinct parts: for the individuals 

with POPFLAG=1 the matrix presents probabilities; on the other hand, individuals with 

POPFLAG=0 will be analysed according to the admixture model defined (no admixture, 

admixture or linkage) and ancestry membership proportions are output. 

 

Concerning the allele frequency model, the correlated allele frequencies model is 

more conservative and should be the preference. The independent allele frequencies 

model requires some knowledge about the correlation levels across populations so there 

needs to be evidence in the data that allele frequencies show reasonably different 

distributions in distinct populations. On the other hand, the correlated allele frequencies 

model allows a greater power to detect distinct populations that show very similar allele 

frequency distributions. However the correlated allele frequencies model will give the 

same results as the independent allele frequencies model if there are not high levels of 

correlation across populations. Therefore using the correlated allele frequencies model 

will guarantee that an unexpected or unknown correlation is detected without affecting 

the results if no correlation exists. 

As a final remark about the models implemented in STRUCTURE, all models 

include specific statistical parameters that give some feedback on the data and 

information considered, such as r (informativeness of the sampling location data), or the 

more sensitive values, such as alpha (relative admixture level between populations) and 

lambda (quantifier of the prior allele frequencies). 

 

Reference populations are important when the user wants to classify study 

populations, especially admixed populations. On the other hand, if the user is interested 

in case-control studies there is not a pressing need for ancestral reference populations 

since STRUCTURE compares genetic populations. In fact, when analysing cases and 

controls, ancestry membership proportions of the two groups are compared through a 

chi-square test and a p value is obtained. If p is significant, population stratification is 

present. However, some authors recommend a replication study in another population, 

use of other neutral markers to improve the correction and verification of the 

associations found. 

 

Concerning the example presented (section 5), we used STRUCTURE to analyse a 

unique set of individuals with genotype data and to perform all possible analysis factor 
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combinations taking into account the optimal K. For example, in the LOCPRIOR model 

the r-mean values obtained under the different parameters tested were less than one. 

This indicates that the prior information was useful to assist clustering, taking into 

account the small number of markers employed for the analysis, particularly for the 

admixed samples. One advantage of STRUCTURE is that it verifies if the prior 

information is consistent with the genotypic differences or similarities amongst 

populations before assigning the proportion of ancestry. 

 

The STRAT analysis we performed is summarized in Fig. 11. STRAT makes a chi-

square test and calculates a p-value for each marker. In this way several tests (the same 

number as the number of markers) are performed and when any of the resulting p-values 

are smaller than 0.05 the chi-square test is significant. When comparing Cases 1 (C1) 

with Controls (Ct) only 16 tests were performed since one marker (M2) has a low 

frequency for allele T (0.070) – STRAT pools alleles with fewer than 10 copies. For the 

comparison of Cases 2 (C2) with the Ct, all 17 markers were analysed. In the summary 

of the distribution of p-values the first line has considerable value for the analysis since 

it includes the probabilities lower than 0.05 – the expected probability value. Dividing 

one by the number of analysed markers the user can obtain the probability value for 

each significant marker. In our example comparing C1 to Ct, as only 16 markers were 

considered, the probability of finding a significant p-value is 0.063 (while comparing 

C2 to Ct with 17 markers, this probability is 0.059). Depending on the number of 

markers that fall into each p-value range, the expected probability is multiplied by the 

number of markers found. For example in the study data of Fig. 11 used to illustrate 

STRAT, in the C1-Ct comparison there is only one significant marker (M12) with a p-

value of 4.4x10
-2

 – that is why the third column (0.02-0.03 range) has a value of 0.063. 

In the C2-Ct comparisons there are five significant markers, three of them with p-values 

falling into the 0.00-0.01 range – so the first column has a value of 0.176 (3x0.059). The 

total sum value of each probability fraction (the observed probability value) is compared 

with the expected probability. For the first fraction this value is 0.05 but the value 

increases with the other fractions (0.10 for the second fraction, 0.15 for the third, etc.). 

The resulting value (the last column of the table) indicates if multiple correction is a 

concern: positive values here illustrate the fact that observed probabilities are more 

frequent than expected. Briefly, STRAT offers corrected p-values at any given locus 

taking into account the confounding effects of population stratification. 

 

With this article we present an updated review and some recommendations that can be 

helpful when performing population structure and admixture association analyses. We 

focused our study on STRUCTURE and its associated post-hoc analysis software 

(CLUMPP, distruct and STRAT). A simulated example file was thoroughly analyzed 

with a wide range of parameter combinations. The concluding remark it is important to 

make after these studies is that there is not one standard analysis parameter in 

STRUCTURE – the data and the study objectives will influence the choice of the most 

appropriate parameter – therefore precaution should be applied in order to avoid 

overestimating the population structure present in complex data. 
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