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Abstract Potato bacterial wilt, caused by the bacterium Ralstonia solanacearum race 3

biovar 2 (R3bv2), affects potato production in several regions in the world. The disease

becomes visually detectable when extensive damage to the crop has already occurred. Two

greenhouse experiments were conducted to test the capability of a remote sensing diag-

nostic method supported by multispectral and multifractal analyses of the light reflectance

signal, to detect physiological and morphological changes in plants caused by the infection.

The analysis was carried out using the Wavelet Transform Modulus Maxima (WTMM)

combined with the Multifractal (MF) analysis to assess the variability of high-resolution

temporal and spatial signals and the conservative properties of the processes across tem-

poral and spatial scales. The multispectral signal, enhanced by multifractal analysis,

detected both symptomatic and latently infected plants, matching the results of ELISA

laboratory assessment in 100 and 82%, respectively. Although the multispectral method

provided no earlier detection than the visual assessment on symptomatic plants, the former

was able to detect asymptomatic latent infection, showing a great potential as a monitoring

tool for the control of bacterial wilt in potato crops. Applied to precision agriculture, this

capability of the remote sensing diagnostic methodology would provide a more efficient

control of the disease through an early and full spatial assessment of the health status of the

crop and the prevention of spreading the disease.
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P. Chávez � J. Flexas
Research Group in Biology of Plants Under Mediterranean Conditions, University of Balearic Islands,
Crtra. Valldemossa km.7.5, 07122 Palma de Mallorca, Spain

123

Precision Agric (2012) 13:236–255
DOI 10.1007/s11119-011-9242-5



Introduction

Bacterial wilt ranks among the most destructive potato diseases in Africa, Asia, and

Central and South America (CABI 2003), causing yield losses of up to 75% (Cook and

Sequeira 1994). It is caused by Ralstonia solanacearum Smith, a soil borne bacterium that

typically invades plants through the roots and colonizes the xylem vessels. In an infected

plant, vascular bundles are filled with multiplying bacteria that obstruct the transportation

of water and nutrients, thus, symptoms include leaf yellowing, vascular browning and

necrosis and wilting of the plant. Physiological changes, such as the increase of respiration

rate and reduction of transpiration and photosynthesis, occur in infected plants (Chiwaki

et al. 2005), which sometimes show a temporary recovery from wilting while the disease is

progressing, or may not show any visible change before a sudden wilting. In any case, all

diseased plants are seriously blighted in the end. Secondary infection occurs as the bacteria

survive for a long time in the soil in the residues of diseased plants (Chiwaki et al. 2005).

Ralstonia solanacearum is classified into 5 races on the basis of host range, and 5

biovars on the basis of the ability of strains to oxidize three sugar alcohols and three

disaccharides (Hayward 1964, 1991; Schaad 1988). The phylogenetically and phenotypi-

cally homogenous cluster known as race 3 biovar 2 (R3bv2) [Division II (Cook et al. 1989)

and Phylotype II (Prior and Fegan 2005)] is the dominant race in the Andean region in

South America where the potato and possibly this race of R. solanacearum originated.

However, it is also present in mountain regions in other tropical areas as well as in the

Mediterranean basin. The pathogen commonly causes latent (asymptomatic) infections in

the cool tropical highlands, but when infected seed tubers are planted in warmer lowland

fields, the resulting plants quickly wilt and die (Allen et al. 2001). R3bv2 was introduced

into northern Europe around 1972 causing significant losses due both to disease incidence

and to quarantine restrictions that require the destruction of infected crops and fallowing of

infested fields (Elphinstone 1996; Janse 1996). The bacteria were probably disseminated

by infected tubers and contaminated irrigation water (Williamson et al. 2002). Despite

ongoing eradication efforts, R. solanacearum is still present in a large number of fields and

waterways of northern Europe, although it has caused only minor direct crop losses

(Elphinstone 1996). Recent ecological studies found that an R3bv2 strain could survive at

least 12 months in temperate region soils and for at least 110 days in surface water at 12�C

(van Elsas et al. 2000, 2001). Solanum dulcamara, a common semi-aquatic weed, is an

important host and source of inoculum in Europe (Elphinstone 1996). R3bv2 is not known

to be established in North America (Williamson et al. 2002; Swanson et al. 2005).

Many trials have been carried out all over the world to control the disease without much

success. No significant control has been achieved by using antibiotics (Habashy et al.

1993), soil fumigants (Weingartner and Shumaker 1988), chemical control (Murakoshi and

Takahashi 1984) or breeding of resistant varieties (Hartman and Elphinstone 1994;

Mendoza 1994; Fock et al. 2001; López and Biosca 2004). Moreover, chemical control is

nowadays a less desirable option due to the increasing demand for low-input and organ-

ically produced products to prevent the potential negative health effects of pesticides and

chemical residues (Sylvander and Le Floc’h-Wadel 2000; Parrott and Kalibwani 2004).

Due to unsuccessful efforts to control the incidence of R. solanacearum around the

world, early detection of the disease is highly necessary as the source of secondary

infection is significantly reduced by the early removal of diseased plants (Chiwaki et al.

2005). Thermal infrared imagery showed that stress-induced reduction of photosynthesis,

transpiration and stomatal conductance are closely related to an increase in leaf temper-

ature in plants (Inoue 1990; Chiwaki et al. 2005). Using this method, Chiwaki et al. (2005)
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were able to determine bacterial infection in plants 4 days earlier than the visual identi-

fication of symptoms, as the invasion of vascular bundles by multiplying bacteria reduced

transpiration and caused a raised leaf temperature. Another promising technique is remote

sensing and spectroradiometry of plant reflectance as it allows the early detection of

morphological and anatomical changes even if these changes are small, as shown for virus

infection (Chávez et al. 2009, 2010). Our own unpublished work provides evidence that the

technique is also able to detect changes caused by water stress in plants. The reflectance

pattern of healthy and stressed (infected) potato plants—in the visible and NIR range of the

spectrum—are expected to differ due to different physiological and ontogenetical

responses of the two groups of plants. Changes in the reflectance, as the normal plant ages,

are related to changes in the ratio of new to aged leaves, which have different concen-

trations of pigments that absorb light in the visible range of the spectrum (UA 2005). With

the onset of translocation of assimilates from the foliage to the tubers, the leaves initiate a

rapid senescence process (Buchanan-Wollaston 1997) that spectrally resembles the effect

produced by stressors in a stressed plant. However, the effects of biotic or abiotic stressors

disrupt the normal timing and pattern change of reflectance that occurs in a healthy plant

along its development from emergence to maturity. This departure from a normal reflec-

tance pattern along time, difficult to be visually noticed at early stages, calls for the

development of a reliable method for the early detection of stress responses to agents such

as bacteria, viruses, and drought periods, based on non-conventional data processing

techniques (Chávez et al. 2010). In this work, the wavelet-based multifractal approach was

used.

Based on preliminary results that showed the sensitivity of reflectance patterns to mirror

changes in metabolism of potato plants, we hypothesized that wavelet-based multifractal

analysis of time series of multispectral reflectance of plants could be used for diagnosing

bacterial wilt infection. We assumed that signals not readily evident in the time domain

could be seen in the frequency domain. Indeed, the diagnostic capability of time-series

reflectance signals has been shown to be enhanced by the wavelet-based multifractal

analysis as the wavelet transform is capable of providing time and frequency information

simultaneously, hence giving a time–frequency representation of the signal. Multifractal

techniques are increasingly recognized as the most appropriate and straightforward

framework for analyzing and simulating not only the scale dependency of geophysical

observables, but also their extreme variability over a wide range of scales (Schertzer and

Lovejoy 2004). Multifractal theory permits the characterization of complex phenomena in

a fully quantitative fashion, for continuous signals (e.g. time, space or wavelength) (Vicsek

1992). An important property of multifractal systems is that they are scale invariant

(Schertzer and Lovejoy 1989), which means that the information they provide is constant

across different scales, allowing for a valid extrapolation up and down scales. This

property of the multifractal analysis is particularly relevant in the work herewith reported,

as it was hypothesized that it would confer robustness and consistency to the analysis of

observed data. Moreover, the multifractal analysis gives a description of several physical

properties of the observed signal such as the internal entropy, the anisotropy and the

correlation among data. Indeed, multifractal analysis has been applied to signal data in

several research fields such as solar flare X-ray emissions (McAteer et al. 2007) soil

science (Posadas et al. 2003, 2005), neurology (Yu et al. 2001; Latka et al. 2002) and

cardiology (Ivanov et al. 1999; Byalovskii et al. 2005) among others. Hence, the objective

of this work was to test the feasibility of using the multispectral light reflectance of plants,

supported by conventional and wavelet-based multifractal analyses of the reflectance

signal, for detecting R. solanacearum infection in potato crops, aiming at developing a
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practical field monitoring method for the spatial assessment of the health condition of the

crop. Although this work is methodologically similar to that reported in Chávez et al.

(2009, 2010), it is different in the sense that it tries to look for a general application of the

diagnostic tool to different stresses which generally cause different physiological and

morphological changes in affected plants. The general hypothesis is that different plant

reactions, caused by a diversity of stressors (e.g. virus, bacteria, water deficits, heat and

cold) could be detected by the tested sensing devices and analytical methods.

Materials and methods

Plant material

Two greenhouse experiments were conducted under a split-plot in time design in Lima,

Peru, during the autumn and winter, 2007. Two potato cultivars with different resistance to

R. solanacearum were tested: 30 plants of Canchán, a non-resistant cultivar, were used in

the first experiment and 30 plants of Costanera, a resistant cultivar, were used in the second

one. In both experiments, germinated tubers were planted into a 30 9 45 cm plastic tray

containing Promix Bx substrate. After 2 weeks, 15 rooted plants in each experiment were

transplanted into individual plastic pots containing 800 g of substrate (mush, sand and soil

in a proportion of 3:1:1) previously inoculated with R. solanacearum. Also, in each

experiment 15 plants transplanted into non-inoculated substrate were used as negative

controls.

Bacterial inoculation

Ralstonia solanacearum was grown in a modified Kelman’s medium (MKM) (French et al.

1995) without tetrazolium chloride (TZC) and then incubated at 30�C for 48 h. Approx-

imately 10 ml of sterile distilled water were added to each plate and bacterial colonies

were stirred using a sterile cotton swab. The resulting bacterial suspension was stan-

dardized using a spectrophotometer Spectronic 20 (Bausch & Lomb, USA) under a 600 nm

wavelength light until obtaining an optic density of 0.1 absorbance, which is equivalent to

a concentration of approximately 2 9 108 CFU ml-1. One day before transplanting the

plants, the inoculum was added to the substrate up to a concentration of 106 cells g-1 of

substrate.

Reflectance data acquisition

Solar radiation reflected by individual plants was periodically recorded before and after

transplanting using a computer assisted Li-Cor Li-1800 spectroradiometer (Li-Cor Inc.,

Lincoln, Nebraska, USA) covering the 350–850 nm wavelength region with a spectral

resolution of 4 nm. As the Li-1800 spectroradiometer has a built-in cosine corrector, the

aperture angle of the fore optics of the spectroradiometer was 608 and measurements were

performed from nadir. Before measurements were taken, a white barium sulfate panel was

placed under the fore optics at the same distance of the plant canopy and the reflected

radiance was used for the calibration of the equipment. Incident radiation flux on the

canopy was measured by facing the sensor to the Sun and the reflected flux was calculated

by the immediate measurement of light intensity registered by the faced-down sensor
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located some 0.20 m over the canopy, resulting in a circular field of view of 20 cm

diameter. Three daily reflectance measurements per plant were taken using the white panel

and the relative reflectance values were averaged to estimate its spectral variability.

Measurements were carried out during approximately 25 days, from one or 2 days before

the bacteria inoculation of substrate, and then after transplanting until the appearance of

symptoms in the plants.

Visual evaluation of infection symptoms

Visual assessments (mainly based on chlorosis and wilting of leaves) of both control and

exposed plants were carried out every 2 days to monitor the development of disease

symptoms. At the end of each experiment, plants were individually tested for the presence

of the bacteria using the CIP post enrichment NCM-ELISA kit (Priou et al. 1999), which

per se does not discriminate latent from active infection, but only confirm or discard the

presence of the bacteria in the analyzed tissue. Therefore, active infection is defined by the

concurrence of disease symptoms and bacteria in the plant, while a latent infection occurs

when an infected plant appears healthy (symptomless) at visual inspection.

Data analysis

Quantification of discrete reflectance by bands

A method previously used for virus (PYVV) detection in potato (Chávez et al. 2009, 2010)

was slightly modified by splitting the reflection spectra into 4 discrete bands to mimic those

of the Landsat TM: blue (450–520 nm), green (520–600 nm), red (630–690 nm) and NIR

(760–900 nm). The proportion of the reflected radiation per band relative to the total of the

four bands was calculated as a function of time (growth), resulting in a heterogeneous

reflectance spectra displaying anomalies through time. This assessment was carried out

with data from the two experiments to contrast the obtained information with the results of

the wavelet-multifractal analysis of the continuous spectra. Also, several spectral vege-

tation indices (Table 1) were calculated to assess their accuracy in detecting the health

condition of the crop as affected by the bacterial wilt disease.

Wavelet based multifractal data analysis

The Multifractal Formalism relies on the fact that the highly non-uniform probability

distributions arising from the non-uniformity of the system often possess rich scaling

properties, as shown in Fig. 1. In a multifractal signal system, the behavior around any

point can be described by the Hölder exponents (h(x)) that quantify the local regularity of a

signal around the point x and is called the singularity exponent. The ensemble formed by

all the points that share the same singularity exponent is a fractal set of fractal dimension

(D(h)). The curve of D(h) against h is called the multifractal spectrum that fully describes

the statistical distribution of the system. Thus, D(h) relates each group of data having the

same singularity (represented by h). It has been demonstrated (Chhabra et al. 1989a, b) that

D(h) corresponds to the entropy density of the system, while the set of h is related with its

internal energy, according to thermodynamic principles. Muzy et al. (1991), Arneodo et al.

(1995) and Bacry et al. (2003) developed a statistical method for the estimation of the

multifractal spectrum based on the study of the maxima of the continuous wavelet
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transform of the signal. This method is known as the Wavelet Transform Modulus Maxima

Method (WTMM), which we used for the reflectance signal analysis to obtain the multi-
fractal spectrum. As light has properties of both waves and particles, the wavelet based

multifractal analysis is suitable to be applied to light reflectance data.

McAteer et al. (2007) showed the equations for obtaining the multifractal parameters

h and D(h), through their scale invariance property. This means that the statistical physics

property is conserved across scales (from fine to coarse), thus providing a more accurate

characterization of the phenomenon under study. These parameters depend on the order

statistical moments ‘‘q’’. For example, q = 1 gives the first statistical moment or mean,

q = 2 gives the second statistical moment and its association with the variance value, and

Table 1 Spectral Vegetation Indexes (SVIs) calculated from multispectral reflectance of potato plants

SVI Aim Equation References

Normalized Difference
Vegetation Index (NDVI)

Structural (RNIR - Rred)/(RNIR ? Rred) Rouse et al.
(1974)

Soil Adjusted Vegetation Index
(SAVI)

Structural [(RNIR - Rred)/
(RNIR ? Rred ? L)] * (1 ? L)

Huete (1988)

Infrared Percentage Vegetation
Index (IPVI)

Structural Rred/(RNIR ? Rred) Crippen (1990)

Photochemical Reflectance
Index (PRI)

Physiological (R570 - R531)/(R570 ? R531) Gamon et al.
(1992)

Modified Chlorophyll
Absorption Index (MCARI)

Chlorophyll [(R700 - R670) – 0.2 (R700 -
R550)] * (R700/R670)

Daughtry et al.
(2000)

Transformed Chlorophyll
Absorption Index

Chlorophyll 3 * [(R700 - R670) -
0.2 * (R700 - R550) * (R700/R670)]

Haboudane et al.
(2002)

Optimized Soil-Adjusted
Vegetation Index

Structural (1 ? 0.16) * (R800 - R670)/
(R800 ? R670 ? 0.16)

Rondeaux et al.
(1996)

Triangular Vegetation Index Chlorophyll 0.5 * [120 * (R750 - R550) -
200 * (R670 - R550)]

Broge and
Leblanc (2000)

Modified Triangular Vegetation
Index 1

Structural 1.2 * [1.2 * (R800 - R550) -
2.5 * (R670 - R550)]

Haboudane et al.
(2004)
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Fig. 1 Heterogeneous signal of a reflectance spectrum showing two types of singularities: step-like and
cusp-like features
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so on. In Multifractal theory the analysis is conducted along a defined q range, yielding the

description of its statistical behavior. In a practical way, the existence of scale invariance

property is portrayed by the linear behavior in the partition function D(h(q)) against

log[scale], and partition function h(q) against log[scale] graphs by each q-values where the

slopes correspond to D(h) and h, respectively, as described by McAteer et al. (2007)

The continuous wavelet transform of the S(k) signal (k is the wavelength variable) is

defined as follows:

CWTw
S ðb; aÞ ¼

1
ffiffiffiffiffiffi

aj j
p

Z

SðkÞw � k� b

a

� �

dk; ð1Þ

Equation 1 shows that the transformed signal of S(k), is a function of two variables,

b and a, the translation and scale parameters, respectively. w is the transforming func-

tion, and is called the mother wavelet, being w* its complex conjugate (Polikar 1996).

The term mother wavelet owes its name to two important properties of the wavelet

analysis: First, the term wavelet refers to a small wave. The condition of being small is

related to the fact that this (window) function is of finite length (compactly supported).

The wave condition indicates that this function is oscillatory. The term mother implies

that the functions with different regions of support used in the transformation process are

derived from one main function, or the mother wavelet. In other words, the mother

wavelet is a prototype for generating the other window functions. Secondly, the term

translation is related to the location of the window, as the window is shifted through the

signal and corresponds to time information in the transform domain. However, we do not

have directly a frequency parameter. Instead, we have a scale parameter which is

inversely proportional to frequency. The parameter scale in the wavelet analysis is

similar to the scale used in maps. As in the case of maps, high scales correspond to a

non-detailed global view (of the signal), and low scales correspond to a detailed view.

Similarly, in terms of frequency, low frequencies (high scales) correspond to a global

information of a signal (that usually spans the entire signal), whereas high frequencies

(low scales) correspond to detailed information for a hidden pattern in the signal (that

usually lasts a relatively short time).

Multifractal functions are used to model signals whose regularity may change abruptly

from one point to the next (Jaffard 2004). In a physical context, this property holds only

within a few magnitudes of change, the so called singularities in the signal (Vicsek 1992).

The singularities are quantified by the Hölder exponent, obtained through the scale

invariant property. The definition of statistical moments is used in the present work, where

q is the order statistical moment. For more details on the subject see the papers by Arneodo

et al. (1995) and McAteer et al. (2007). In our case, the continuous raw reflectance signal

was submitted to a wavelet-based multifractal analysis to search for singularities. Thus,

following the works of Posadas et al. (2003) and McAteer et al. (2007), wavelet transform

modulus maxima and multifractal formalisms were applied to the data, aiming to detect

such singularities and obtain the multifractal spectrum for each group, control and exposed

plants.

Data pre-processing

In order to enhance the multifractal analysis, the raw reflectance signal was pre-processed.

A raw signal is the primary reflectance signal measured and a pre-processed data is a signal

that has been ‘‘transformed’’ by any of the available mathematical transformations—but
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not yet submitted to multifractal analysis. Thus, a background correction was applied to the

raw reflectance data to reduce both the variations caused by small atmospheric changes

occurring while measuring all the plants within a day and the non-systematic measuring

errors. The background correction was performed by the linear regression shown in Eq. 2.

The slope and intercept of the regression were estimated by Eqs. 3 and 4.

SjðkiÞ ¼ AjGjðkiÞ þ Bj ð2Þ

Aj ¼
Gmaxj

� Gminj

� �

GTotal max � GTotal minð Þ ð3Þ

Bj ¼ Gminj
� AjGTotal min ¼ Gmaxj

� AjGTotal max ð4Þ

where Sj(ki) and Gj(ki) are the corrected and raw signals for the jth plant at the ith
wavelength, respectively, Gmaxj

and Gminj
are the maximum and minimum raw measures of

the jth plant, and GTotalmax and GTotalmin are the maximum and minimum raw measures of

all the plants within a treatment, measured in a sampling date, Aj is the ratio of the response

range of the jth plant to total population, Bj is the regression intercept.

The wavelet used for the multifractal analysis of the pre-processed data was the Morlet

wavelet, included in the software Multifractal.f.pro, developed by the International Potato

Center (CIP) from the original software by McAteer et al. (2007).

Statistical analysis

The response variables (raw spectra and multifractal parameters) were analyzed following

the split plots in time design. In the main plot, plants were randomly assigned to each of the

treatments to avoid biases in the allocation of plants. Reflectance measurements taken over

time (or sub-plot) could not be randomized therefore a carry-over effect—i.e. observations

close in time may be more related than observations far apart in time—could not be

avoided. To minimize the bias introduced by this carry-over effect, repeated measurements

were performed as explained by Wolfinger and Chang (1998). The analysis of variance

generated by the General Lineal Model (GLM) allows the determination of statistical

differences between treatments, as a function of time, with a pre-established probability

level (P value) of 5%. A significant difference indicates that, on the one hand, the variation

due to treatment, at a particular time within the experiment, was greater than the variation

among plants within each treatment. On the other hand, it indicates that the number of

replicates was enough to reach a robust assessment of the differences between control and

exposed plants. All the statistical analyses were performed with the SPSS 12.0 software

package (SPSS Inc., Illinois, USA).

Results and discussion

The post enrichment NCM-ELISA laboratory test detected that 53 and 20% of the plants

transplanted into the inoculated substrate—for the first and second experiments, respec-

tively—were infected by the bacteria. However, only half of the infected plants presented

visual symptoms in the first experiment and two-thirds in the second one. In other words,

the latently infected plants—i.e. 50 and 33% of the plants with positive reactions in the

NCM-ELISA test in the first and second experiments, respectively—could not be identified
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Fig. 3 Reflectance patterns of control and exposed potato plants (Ctrl = Control, Ni = Non-infected,
Rs = symptomatic (infected) plants). Plants cv. Canchan (left) that developed the bacterial wilt disease (Rs)
showed an increased reflectance in the blue and specially in the red bands of the electromagnetic spectra,
keeping the green reflectance as constant but losing the typical spectra of vegetation. In contrast, Rs plants
cv. Costanera (right) did show a moderate increase in blue, green and red light reflectance, but the spectrum
kept the typical spectra of vegetation. (dpt = days post transplanting into soil inoculated with bacteria)
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as infected plants by visual assessment. This finding corroborates that relying exclusively

on visual evaluation of bacterial wilt symptoms could be misleading.

Multifractal results

To apply the multifractal analysis to the reflectance signals obtained from control and

exposed plants, the first step was to show that the pre-processed data presented multifractal

attributes. The signal showed cusp-like and step-like singularities (Fig. 1). Then, the scale

invariance property (linearity or physical-statistical laws along the scales) shown by both

types of signals (Fig. 2) made the estimation of the multifractal singularity spectra and its

parameters possible. The system showed linearity for the order moments q ranging from

-2 to 2, for both experiments.

Differences between control and exposed plants were not clearly shown by the raw

reflectance spectra as the signals corresponding to infected asymptomatic and healthy

control plants were similar (Fig. 3). However, the multifractal analysis enhanced the dif-

ferences in multispectral reflectance, showing that infected plants, whether symptomatic or

not, soon differed from control plants.

Figure 4 shows that the multifractal singularity spectra have more than one fractal

dimension, which is a characteristic of multifractal systems. The resultant singularity

spectra showed evident differences between the multifractal dimensions (D0 : Dh(q = 0),

D1 : Dh(q = 1), and D2 : Dh(q = 2)) of healthy and infected plants. The values D0, D1

and D2 are known as the capacity, the entropy and the correlation dimensions, respectively.

The capacity dimension provides global (or average) information about a system (Voss

1988). For example: the dimension D0 = 1, 2, and 3, represent the line, square and cube

dimension, respectively, (often called Euclidean dimensions). For the 0 \ D0 \ 1 interval

values, clusters of point values, discontinue lines and attractors are represented. For the

1 \ D0 \ 2 interval, curve lines and planes with holes are characterized. And for the

2 \ D0 \ 3 interval, curve planes or surfaces with or without holes and curve cubes are

characterized and so on. Then, the capacity dimension D0 (also called Fractal dimension)

would be summarized as a parameter that describes the capacity of a signal to fill a

Euclidean space. D1 represents the entropy scale invariant value related to the information

(or Shannon) entropy (Shannon and Weaver 1949). Entropy, in thermodynamics and

information theory (Williams 1999), is a parameter that describes the energy not available

for useful work in a thermodynamic process or as information. In our context, low entropy

means that a large proportion of the system’s information is obtainable. D2 correlates long

and short memory components, being the statistical component that expresses the asso-

ciability or concurrence within signal values groups. Table 2 shows the differences in the

capacity dimensions of the multifractal spectra taken from non-infected, latently infected

and symptomatic plants from the 16th and 21st days after transplanting into the bacterial

inoculated soil, for the first and second experiments, respectively. We focused on D0, since

its computation is of simpler implementation and gave as good results as D1 and D2.

Figure 5 shows the results of our method based on the multifractal formalism. Each sub-

ject’s dataset is characterized by three quantities: The first quantity (z-axis) is the degree of

multifractality, which is the difference between the maximum and minimum values of local

Fig. 4 Multifractal singularity spectra of plants with respective standard errors. First experiment with
potato plants cv. Canchan (left column a) and second experiment with cv. Costanera (right, b column).
(Ctrl = Control, Ni = Non-infected, Rs = symptomatic (infected) plants, dpt = days post transplanting
into soil inoculated with bacteria)

c
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Hölder exponent h for each individual (hmax - hmin = Dh). If Dh = 0, the signal is

monofractal (or of fractal behavior over all its physical laws), but if Dh = 0, it is multi-

fractal (support more than one fractal dimension or shows more than one Dh value). The

second quantity (y-axis) is the mass exponent value s(q) characterizing the scaling of the qth

moment. This s is a multifractal parameter that provides insights about how much of the

measure (or the signal) is concentrated or distributed with respect to each statistical q-th

moment (Posadas et al. 2003). The third quantity (x-axis) is the standard deviation of the

light reflectance signals. It is known that s(q) = h(q)�q - Dh(q), where q is the order

moment (Halsey et al. 1986). So, for q = 0, the scaling exponent of the zero moment will be

s(q = 0) = - Dh(q = 0), then showing negative values for the x-axis in Fig. 5. More

detailed information about the exponent s is provided elsewhere e.g. Halsey et al. (1986),

Vicsek (1992), Arneodo et al. (1995) and Posadas et al. (2003). Then, Fig. 5 shows the

discrimination between control, non-infected, latently infected and symptomatic diseased

plants.

The dates when the differences in the spectra were noticed matched the time when

the visual inspection detected the first symptoms in infected plants in both experiments.

Table 2 Differences in the capacity or fractal dimension (D0) between control and exposed (grown in
R. solanacearum inoculated soil) plants in the first and second experiments

Days post transplanting in soil
inoculated with bacteria

1st experiment
DD0 �MSE D0Ctrl � D0Rs

ð Þ

Non-infected Actively infected Latently infected

0 0.02 ± 0.004 0.02 ± 0.004 0.02 ± 0.004

10 0.11 ± 0.023 0.11 ± 0.023 0.11 ± 0.023

11 0.02 ± 0.002 0.02 ± 0.002 0.02 ± 0.002

13 0.01 ± 0.013 0.01 ± 0.013 0.01 ± 0.013

16 0.05 ± 0.005 0.17 ± 0.029 0.05 ± 0.005

17 0.01 ± 0.017 0.15 ± 0.023 0.01 ± 0.017

20 0.07 ± 0.012 0.18 ± 0041 0.18 ± 0.041

23 0.07 ± 0.018 0.14 ± 0.031 0.07 ± 0.018

26 0.09 ± 0.013 0.26 ± 0.048 0.09 ± 0.013

29 0.04 ± 0.037 0.26 ± 0.379 0.04 ± 0.037

35 0.02 ± 0.018 0.27 ± 0.019 0.02 ± 0.018

Days post transplanting in soil
inoculated with bacteria

2nd experiment
DD0 �MSE D0Ctrl � D0Rs

ð Þ

Non-infected Actively infected Latently infected

0 0.02 ± 0.008 0.02 ± 0.008 0.02 ± 0.008

21 0.03 ± 0.016 0.47 ± 0.032 0.39 ± 0.035

22 0.05 ± 0.006 0.71 ± 0.059 0.05 ± 0.006

27 0.02 ± 0.004 0.02 ± 0.004 0.02 ± 0.004

30 0.07 ± 0.005 0.08 ± 0.015 0.07 ± 0.005

35 0.03 ± 0.016 0.35 ± 0.035 0.03 ± 0.016
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The criteria for defining a plant grown in inoculated substrate as non-infected, latently

infected, or symptomatic was based on its multifractal spectra response. Thus, a plant was

identified as symptomatic when the intermittent response of the multifractal spectra of any

particular plant reached a steady state of significant difference (P-value \ 0.05) with

respect to control plants. In contrast, when the intermittent response of the multifractal

spectra of any particular plant grown in inoculated substrate eventually reached a steady

state that did not differ significantly from the spectra from control plants, it was considered

as a latently infected plant. On the other hand, when the multifractal spectra of a plant

grown in inoculated substrate did not ever differ significantly from the spectra from control

plants it was deemed as uninfected. For the first experiment, 100% detection of the total

infected plants (8 out of 8) was achieved by the multifractal spectra response although

three of them were regarded as latently infected as no symptoms were noticed. Confir-

mation of disease in those latently infected plants was obtained through the ELISA test. In

the second experiment also, with cv. Costanera, the multifractal analysis correctly dis-

criminated both the symptomatic and latently infected plants (Table 2) but 5 days earlier
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Fig. 5 Discrimination method based on the multifractal formalism, a Each subject’s dataset in the database
is characterized by three quantities. The first quantity (z-axis) is the degree of multifractality, which is the
difference between the maximum and minimum values of local Hurst exponent h for each individual
(hmax - hmin = Dh). If Dh = 0, the signal is monofractal, but if Dh = 0, it is multifractal. The second
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standard deviation of the time series of light reflectance signals. (Ctrl = Control, Ni = Non-infected,
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than in the first experiment with cv. Canchán. Costanera is described as a R. solanacearum
resistant cultivar (CIP 2008). The capability of remotely sensing light reflectance and

concomitant multifractal analysis of the signal to detect damage caused by bacteria is

dependent on changes in reflectance brought about by blockage of vascular tissue in

infected plants (Grimault et al. 1994; Hernández et al. 2005). Also, the discrimination of

healthy, diseased and latently-infected plants might be related to the tyloses, structures

whose formation is associated with response to stress caused either by pathogens or other

factor (Agrios 2005). Grimault et al. (1994) observed that tyloses occurred in inoculated

tomato cultivars resistant to R. solanacearum, whereas in susceptible cultivars such

structures were not formed.

Discrete reflectance bands and vegetation indexes

A distinct reflectance pattern from infected plants was evident, mainly within the visible

region of the electromagnetic spectrum, 1 day after both the visual evaluation and the

multifractal analysis of multispectral data were able to detect first initial symptoms of

disease, i.e. 16 and 21 days post transplanting into R. solanacearum-inoculated substrate

for the first and second experiment, respectively (P-value \ 0.05). The response was

consistent in all exposed plants. The most suitable bands for detecting the bacterial wilt

infection were the blue (P-value \ 0.01) and the red regions (P-value \ 0.01). Unlike the

sustained discrimination feasible with multifractal spectra, where the differences in the

parameters of the multifractal spectrum were maintained for a longer time, particularly for

susceptible R. solanacearum varieties, the detection window using discrete bands seems to

be very short and variable and might require frequent assessments to avoid missing the

reflectance difference produced by infected plants. In contrast, both the green and the NIR

regions of the electromagnetic spectrum were not reliable indicators of R. solanacearum
stress. Particularly the NIR showed no change, being of no use for revealing differences

between the treatments (Fig. 6).

Spectral vegetation indexes tested showed an inconsistent and unreliable response

(Fig. 7), likely due to their dependency on a few optimal wavebands and discarding the

majority of the spectrum (Blackburn and Ferwerda 2008).

Our results indicate that blue light reflectance increased in infected plants, which means

a reduction of blue light absorbance. In contrast, red light reflectance did not increase as

markedly as blue light, and even in some stressed plants it did not vary. This could be

related to the action of accessory light-harvesters and photo-protector pigments that were

unaffected by stress. This, together with the chloroplasts movements in the cells to avoid

strong light/elevated temperature situations (Wada et al. 2003), could explain why blue

reflectance always increased under a stress situation. In fact, in pathogen resistant plant

varieties, the accessory pigments and their sub-products (i.e. phenolic compounds) have

additional defense properties against pathogens, so plants appear yellow and/or red at the

site of infection or attack due to a higher synthesis of those sub-products as a reaction, as

seen in the R. solanacearum resistant potato cultivar Costanera.

Conclusions

Reflectance patterns in the 350–850 nm region of the electromagnetic spectrum, processed

through multifractal analysis, was able to detect bacterial wilt infected plants at the same

time as the expert trained eye in 100% of the observations. Furthermore, the multispectral
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Days post transplanting in R. solanacearum inoculated substrate

(A) 1st exp. cv. Canchan (B) 2nd exp. cv. Costanera
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Fig. 6 Discrete bands of plants’ reflectance mimicking those of satellite Landsat TM, blue (450–520 nm), green
(520–600 nm), red (630–690 nm), NIR (760–900 nm). First experiment (a, left) and second experiment (b, right).
(Ctrl = Control, Ni = Non-infected, Rs = symptomatic (infected), Lat.inf. = Latently infected plants)

250 Precision Agric (2012) 13:236–255

123



IPVI

dpt

IP
V

I v
al

ue
s

0,15

0,20

0,25

0,30

0,35

0,40 Ctrl 
NI 
Rs
Lat.inf. 

SAVI

dpt

S
A

V
I v

al
ue

s

0,0

0,2

0,4

0,6

0,8

1,0

Ctrl
NI
Rs
Lat.inf.

NDVI

dpt

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

N
D

V
I v

al
ue

s

0,35

0,40

0,45

0,50

0,55

0,60

0,65 Ctrl
NI
Rs
Lat.inf.

Fig. 7 Behavior of three of the
spectral vegetation indices
calculated from
spectroradiometric data in the
first experiment. (Ctrl = Control,
NI = Non-infected,
Rs = symptomatic (infected),
Lat.inf. = Latently infected
plants, dpt = days post
transplanting into soil inoculated
with bacteria)

Precision Agric (2012) 13:236–255 251

123



and multifractal analyses were able to detect asymptomatic plants (not detected at all by

the trained eye), achieving a success rate that was on average about 82% of the diagnostic

achieved by the CIP post enrichment NCM-ELISA laboratory assessment. Although

several multifractal parameters can be used in the detection, the capacity or fractal

dimension, which can be easily estimated, was as robust a discriminator as the entropy or

correlation dimensions. It is also important to point out that the direct reflectance in the

blue and red regions of the electromagnetic spectrum were also sensitive to the presence of

R. solanacearum symptoms, albeit for a short period of time.

The fact that it is possible to illustrate a distinct reflectance pattern for stressed plants at

several wavelengths within the multispectral section of the electromagnetic spectrum is a

useful finding for researchers with access to a spectroradiometer or remotely sensed

imageries over a range of wavelengths (e.g. SPOT, AVIRIS). Also, discrete ranges of the

spectrum would be useful and could be used by discontinuous sensors, such as ground-

based or air- and space-borne multispectral cameras.

The proposed reflectance-based method could be a practical and cost-effective tool with

a high utilization potential for precision agriculture in a plant health monitoring program,

as it could help farmers to have both a more focalized and timely response to intra-field and

intra-crop variations such as the outbreak of disease, which tends to be patchy. However,

further research must be carried out to improve the proposed remote sensing approach.
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A. Thiry for his permanent and unconditional support, and Drs. Salomón Helfgott and Vicente Rázuri from
La Molina Agricultural University for their good advices.

References

Agrios, G. N. (2005). Plant pathology (5th ed.). San Diego, CA: Academic Press.
Allen, C., Kelman, A., & French, E. R. (2001). Brown rot of potatoes. In W. R. Stevenson, R. Loria,

G. D. Franc, & D. P. Weingartner (Eds.), Compendium of potato diseases (pp. 11–13). St. Paul, MN:
The American Phytopathological Society.

Arneodo, A., Bacry, E., Graves, P. V., & Muzzy, J. F. (1995). Characterizing long-range correlations in
DNA sequences from wavelet analysis. Physical Review Letters, 74(16), 3293–3296.
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